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A method is developed for making exact evaluations of correlation functions of 
odd numbers of spins on the Onsager-Ising lattice, applicable to cases in which 
the separations between the spins are finite. The method is based on an identity 
which permits the reduction of determinants of infinite-dimensional matrices to 
those of finite dimension. Particularly simple results are obtained when all spins 
are on a straight line. Numerical calculations are carried out for a few cases. 
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1. I N T R O D U C T I O N  

Recently various authors  have examined correlat ion functions o f  spins on the 
Onsager- Is ing  lattice in the limit o f  infinite spin separations. (1'2) The investi- 
gations have been motivated,  in part,  by the impor tance  o f  these functions 
in scaling and renormalizat ion group theory and by the close connect ion to 
q~4 theory.13) 

In contrast ,  relatively little work  has been done on correlat ion functions 
for small spin separations, possibly because o f  lack o f  comparable  incentive. 
Further,  for an odd  number  o f  spins with small separation, calculational 
difficulties may  have inhibited investigations; only two cases (4'5) have been 
evaluated, each involving three spins on the same straight line. 

In a recent work  (6) by one o f  us on interacting Frenkel excitons, the 
moments  o f  optical transit ion spectra were related to spin correlat ion 
functions. The most  impor tan t  correlations in this problem are those 
involving near neighbors.  The initial mot ivat ion for the present work  was 
the need to calculate the funct ion (O-ooaolo-lo). An  identity developed below 
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proved to be useful for evaluating all correlation functions of  a small, odd 
number of  spins separated by small distances. The identity leads to a 
particularly simple expression for the correlation function if the spins lie 
on the same horizontal, vertical, or diagonal line. 

The construction due to Montroll  et al. (v) (MPW) for calculating the 
correlation function of a pair of  spins may be applied in evaluating the 
correlation function of  any even number  of  spins, (8) Below the Curie 
temperature, the correlation of an odd number is equal to ~ -  ~ times the 
correlation function of an even number, taken in the limit in which one 
spin is moved infinitely far (4'5's) 2 from the others. Here, ~ is the spontaneous 
magnetization (9,1 o) 

~#2 _= lira (aooao,) = [1 - (sinh 2fiE1 sinh 2fiE2)-2] 1/4 
t l ~ o  

where E x and E 2 a r e  the horizontal and vertical Onsager-Ising coupling 
constants. 

In applying the work of MPW to the many-spin case, one draws a series 
of nonintersecting lines (deformation lines) on the Onsager-Ising lattice, 
each line connecting a pair of  spins contained within the set of  those whose 
correlation is desired. A deformation of an intersite dimer on the Fisher (11) 
(or Kasteleyn "2)) lattice is associated with each segment connecting nearest 
neighbor spins of  a given deformation line, an index (deformed site index) 
is assigned to each point where a deformed dimer can terminate or commence, 
and a mesh is defined by the direct product of  the set of  deformed site 
indices (ordered in a particular way) with itself. On this mesh, a matrix is 
constructed whose Pfaffian evaluates the many-spin correlation function. 

When the correlation function is that of  an odd number  of  spins, the 
construction leads to an infinite-dimensional determinant of  a particular 
structure. In the next section, a theorem will be proved which permits the 
reduction to a deteminant of  finite dimensions. In the following sections, the 
theorem is applied to the calculation of  correlation functions of  arbitrary 
odd sets of  spins, with particular applications to (aooaolalo) and to cases 
in which the spins are on the same line. 

2. R E D U C T I O N  OF INF IN ITE  D E T E R M I N A N T S  

It will be shown that for any finite-dimensional matrix of the form 

2 No one has shown that when correlation functions of an odd number of spins are calculated 
in this way, the result is independent of the path over which the last spin is moved to infinity. 
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with T invertible and a square, 

det 2 = det Tde t (a  - BT-IC) (2) 

We first prove Eq. (2) when a is invertible. It  can be seen that 

( d e t 2 ) / = d e t ( 1 0  _ ~ ) d e t ( c  B)det (10 0 1 ) d e t 2  

( 1 -a-lB\, { / 1 allB ) 
= (det a det T) 2 det -T - 'C  1 /det\v-ac 

= (det a det T) 2 det(1 - a-IBT-1C) det(1 - T-aCa-IB) (3) 

The last step follows f rom the result o f  the matrix multiplication. We now 
show that  the last two factors o f  the right side o f  Eq. (3) are equal. Let 
X - T - a C a n d  Y =- a-iB, and compare  det(1 - XY) with det(1 - YX). The 
dimensions o f  X are n x m, with n > m, while those o f  Y are m x n. Define 
the n x n matrix X '  by adding n - m columns of  zeros to X, all to the right 
o f  the X columns;  similarly, define Y' by adding n - m rows o f  zeros below 
the rows of  Y. Examinat ion shows that  X '  Y' = XY [so that  det(1 - X '  Y') = 
det(1 - XY)], while 

(1Yx 
1 - Y ' X ' =  (4) 

0 

Then det(1 - Y'X') = det(1 - YX), so the problem is reduced to showing 
that  det(1 - X '  Y') = det(1 - Y'X'). N o w  the square matrices X '  Y' and Y'X' 
have the same eigenvalue spectrum and therefore so do (1 - X ' Y ' )  and 
(1 - Y'X'). Then the determinants  are equal, and so 

[det 2] 2 = [det Tde t (a  - BT- 1C)]2 (5) 

By continuity,  starting f rom those 2 matrices in which B and C vanish, 
one finds that  the appropr ia te  sign choice leads to Eq. (2). Since the rhs 
o f  Eq. (2) does not  involve a -  a, a continui ty a rgument  can be used to show 
it is valid when a is not  invertible. The theorem can also be extended 
t o  T o f  countab ly  infinite dimension if (a) det T exists and (b) the index 
sums in BT- 1C converge uniformly. The theorem is useful for calculations 
when the division o f  2 into blocks fulfills the following requirements:  
(c) the square block a in the upper  left corner  is reasonably small, (d) the 
determinant  o f  block T can be evaluated in the limit o f  infinite dimension, 
and (e) the matrix product  BT-1C can be evaluated. 
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3. T H E  2 M A T R I C E S  

We will evaluate the correlat ion funct ion of  three spins, two of  them 
nearest  neighbors  along the horizontal  axis, the third a nearest  ne ighbor  of  
one of  the two but  located in the adjacent  row. We will use the identity 

]@0oaolalO>l = I~gl- 1 lim 1<O'0o~o1~1o~1.>1 (6) 
n--+ co 

The deformat ion  geomet ry  consists o f  a horizontal  line f rom (1, 0) to (1, n) and 
the single line segment  between (0, 0) and (0, 1) on the Onsager - I s ing  lattice. 
The set o f  deformed site indices on the Fisher or Kaste leyn lattice corre- 
sponding to this choice is taken in the order  

0OR, 01L, 10R, I 1 R  ..... l(n - I )R,  l l L ,  12L,..., l nL  

M P W ' s  construct ion leads to 

where 

lim (aooao ta loa l , )  2 = lim d e t [ ( y -  1 + Q)(1 - z12)] (7) 
n~oo  n ~ o o  

zi = tanh  flEi, i = 1, 2 (8) 

(i~ y -  1 = 0 (Z  1 1 - -  Z 1 ) - I  ( 9 )  

1 

Q = /5' 0 - (10) 

6 '  v"  

The  tilde designates the transpose.  Cor responding  blocks of  y -  1 and Q have 
the same dimensions;  going down the diagonal  o f  either matr ix ,  the square 
diagonal  blocks have dimensions 2, n, and n. The submatr ices  of  y - 1  and 
Q are 

[ 0 l V' --- ( l l a )  
A - 1 (0, 1; 0, 0)L R 0 

V'i} -= A -  a(1, 1 + i; 1,j)LR = A-X(0, 1 + i - - j ;  0, 0)L~ 

-= - - A - l ( 0 ,  0; 0, 1 + i - - j )RL ( l l b )  
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G; i = 6toA-~(O, 0; 1 , j  + 1)R L + 6 ,~A-1(0,  1; 1 , j  + 1)L L (11C) 

D~j = 6~oA-1(0, 0; 1,j)RR + 6txA-1(0,  t; 1,j)LR ( l i d )  

where  

A -  ( , j ,  k, l),a = (2~i) - 2  dv d~ ~ i -k - lvJ-~- lA- l (v ,  ~)~ 

( l l e )  
~ = R , L , U , D ;  f l = R , L , U , D  

and  A -  a(v, r is f o u n d  in Eq. (26) of  M P W ,  with r = e ~q~ and  v = e ion. The  
c o n t o u r  in tegra t ions  are carr ied  ou t  on  uni t  circles. 

In  ou r  ca lcula t ions ,  we require  on ly  the R L ,  LR ,  an d  R R  elements  o f  
A -  l(v, ~): 

A-~(  v, ~)R~ = - - A - l (  v, ~-)u. = _ ( ~ 2  _ 1)[A(v, ~ ) ] -1  (12a) 

A-1Cv, ~)RL = - A - l (  v - l ,  ~- 1)LR 

= - r  ~ ) ] - ' [ z ~  -a - z 2 - ZxV(Z21 + ~-1)(1 + z2~)  ] (12b) 

where  3 

A(v, r = (1 - z12)[~ - cffv)][~ - ~(v) - 1 ]  (13a) 

[ ~ ( v ) ]  -+' = {[1 - ( c q ~ ) - ' ] ( ~ ,  - ~ = ) } - ~  

x {[L(V)Jl(V-X)]2c~; 1 + [f2(v)fz(v- ')]2e; ' 

-- 2(~1 ~2)-  '/2f , (v)f , ( v- ' ) f  2(v)f 2( v- 1) ) (13b) 

0r 1 = 21(1 -- Iz2l)(1 + Iz/I)  - 1  (13c) 

(X 2 = Z 1 2 ~ l  (13d) 
a nd  

f j ( v )  = (1 - ~ v ) 1 / 2 ;  

M P W  f o u n d  tha t  

where  

j = 1, 2 (13e) 

A-l(0, 1 + i - j ;  0, 0)LR = (1 -- z~Z)-~[a~_j - Zl(~i j  ] (14a) 

{. 
= (2hi) -1  ~. ~(v)v j - i - I  dv ai-j 

(o(v) =fl(v)f2(v-  1)[f2(v)fl(v- 1)] -1 

(14b) 

(14c) 

3 The sign of the right side of Eq. (13b) changes when E1/E 2 is negative; however, in this paper 
we use only I~(v)l-1. 
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From a similar calculation, we find the elements of D' and G', 

G'~,,.=-D'o,m=-(2rci)ZffA-'(h~)RRW ~dvd~ 

= -[2~i(1  - zl2)] 1 f ~ ( v ) - l v , . - I  dv (15a) 

= (2~i) -2 ~.fA-l(v, ~)L~V-m~ -2 dv d~ D],,. 

Z12)] - 1 .~q~(v)[O~(V)] - lvm- 1 dv (1 [(27zi)(1 5b) I 

= - [27ti(1 - zi2)] -1 fvm-ic~(v-1)[a(v)] -1 dv (15c) 

We put the matrix 2' - ( y - 1  + Q)(1 - Zl 2) [which appears in Eq. (7)] 
in the form of 2 given in Eq. (1), with a 2 x 2 antisymmetric submatrix a 
whose lower left element is ao; the submatrix T is (2n x 2n)-dimensional of 
the form 

where S o -- a~_j-. The submatrices B and C are given by 

B = (D G)=-C (17) 

where D = (1 - -  z l 2 ) O  ' and G = (1 - Zl2)G ', 
In the more general problem (the evaluation of the 2n + 1 spin correlation 

function in which all spins are separated by finite distances) we also work 
with a geometry in which one of the spins is connected by a horizontal or 
vertical deformation line to a spin infinitely far from the others. The mesh 
is constructed from an ordering in which indices on the line of  infinite length 
appear last, with all R indices in ascending order, followed by all L indices 
in ascending order. Then, the square of the correlation function will equal 
the determinant of a matrix 2", which, when arranged in the form of Eq. (1), 
has the T of Eq. (16); the determinant of the submatrix a equals the square 
of the correlation function of the 2n spins which are paired by the n non- 
intersecting lines of finite length; B and C are put in the form of  Eq. (17). 
If  the subset of  deformed indices corresponding to lines of  finite length has 
as its tth element (i'k'~) and if the spin which is paired with the spin 
at infinity is located on the Onsager-Ising lattice at (i, k), then the tjth 
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element of  D is given by 

Dtj = (2~i)-1 ;D~(fl)flj-1 dfl 
3 

where 

(18) 

(. 
Dt(fl) = (27ri)- 1 ~ A~R,(fl ' ~)~-(i'-i+ ,)ffk-k') d~ (19) 

When the index R on the rhs of Eq. (19) is changed to L, the left sides of 
Eqs. (18) and (19) are replaced by G O and Gt(fl) , respectively. 

Since all RR and LL elements ofA - l(0i; 0j) vanish, an alternate ordering 
simplifies the form of the matrix when all spins are in a horizontal line: 
all R indices precede all L indices; within each subset, the indices of all 
points on all deformation segments are taken in their order on the line, 
proceeding toward the spin at infinity. By interchanging E 1 and E2,  the 
correlation for spins located on the vertical axis is derived. One may use 
Stephenson's method (13) (also Ref. 14, pp. 186-189) to rotate spins along the 
horizontal to the diagonal by setting 71 equal to zero and ~2 equal to 
(sinh 2fiE 1 sinh 2fiE2)-1 at the end of  the calculation. The alternate ordering 
leads to 

[ lim (ao ioaO i, "" ao,i2fio,~2j+.) ] z 

(o 
= lira det , = lim(det 2") 2 (20a) 

n ~ o o  

2,. = ( C  B)  (20b) 

where 

The square matrix S is defined as before; 7 is divided into submatrices ])2p,2q: 

700 ])02 "" ])0,2J-2 ) 

])20 ~)22 "'" ] ) 2 , 2 J - 2  
]) = (20c) 

~12J- 2,0 72J- 2,2 "'" ])2J- 2,2J- 2 

Here, each block ~12p,2q has horizontal dimension izq+l 
dimension i2p + 1 - i2p, and its cl element is 

(])2p,2q)cl = a i 2 , - i z q  + C - -  l 

-i2q and vertical 

(20d) 
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with aj defined in Eqs. (14b) and (14c); 

/~=( /~o B2 "" /~2~-2) 

where each Bz~ has vertical dimension i2~+1 -- i2~; 

C = ( C 0  C2 "'" C2j-2) 

with each C2= having horizontal dimension i2~+1 
B2~ and C2~ are given by 

( B 2 ~ t ) p , q  ~ ai2~- i2J+p-q 

( C z # ) k , m  = a i 2 J -  12#+,,,-~, 

(21a) 

(21b) 

--i2=. The elements of 

(21c) 

(21d) 

4. E V A L U A T I O N  OF D E T E R M I N A N T S  

The 2 matrices in the last section are put in the form of Eq. (l) in such 
a way that conditions (a)-(e) are satisfied. The fulfillment of (a) and (d) 
follows from the MPW evaluation (which leads to det S = M2). That (b) 
and (e) are satisfied in the cases treated here follows from the development 
below. 

The product BT-1C contains contributions of the forms XS-  ~ f-and 
XS- 1 f ,  where X and Yare submatrices (for example, D and G) with elements 
of the form 

= (2~zi)- x ~v j -  1Xi(v ) dv x,j (22a) 

Ykm = (2rci)-* ~(fl)k- 1 y,,(/3) d/3 (22b) 

Xi(v ) and Yk(/3) are each analytic in the neighborhood of the appropriate 
unit circle, for all T < T c. A matrix element of S -  1 is (Ref. 14, pp. 203-215) 

[.[. 
S m , n  - -  - -  - (23a) 

P({) = fx ({)[f2({)] - 1 (23b) 

The double contour in Eq. (23a) is taken with [21 = 1 = I{I except for a 
deformation 12{I < 1 near 2 = 4. 

In each matrix element of  XS-  t ~, the index sums may be brought inside 
the quadruple integral if contours are chosen with v < r < 2. With these 
choices, one may sum the two geometric series, and the resulting poles at 
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v = ( and/? = 2 can be used to perform the ~ and 2 integrations, leading to 

( XS-~  ~t,,, = (2~i) -z ~ dv dfl [-(1 - vfl)vflP(v)]-lP(fl)Xt(v)Ym(fl) (24a) 

Iv/~l < 1 

( x g - '  r0,,m 
Iv~i < I 

Equation (2) yields 

det 2" = j#4 det(a + D S - 1 G  - GS-ljO) (25) 

det 2" = j//2 det(7 - B S -  1C) (26) 

We may evaluate det 2' as a special case of Eq. (25). It has been noted that 

(0 o o) a = (27) 
a o  

Equations (18), (19), and (15a)-(15c) lead to 

D,(/~) = 6 ,o [~ ( /~ ) ] - '  + 6,, r  - i  (28) 

G,( f l )  = - { 6 , o [ ~ ( f l ) ]  - ' ~b ( f l -  1) + 6, ,  [o~(f l) ]  - 1} (29 )  

These two expressions are appropriately substituted for X,(v) and Ym(fl) in 
Eqs. (24a) and (24b). The four elements of the matrix on the right side of 
Eq. (25) are thus expressed in terms of double contour integrals. Here (as well 
as in the evaluation of det 2") the first integration is easily carried out in each 
matrix element. In the general 2", the second integration leads to a function 
of ~1 and c~ 2 which is a mixture of algebraic terms and elliptic integrals. 
The result for 2' is much simpler. The terms with elliptic integrals completely 
cancel one another; the diagonal elements of the matrix on the right 
side of Eq. (25) vanish, while the off-diagonal elements (negatives of each 
other) are algebraic. The final result for the correlation function is 

I<aooaolalo>l = ~/[coth 2fiE1 + coth 2fiE 2 - coth 2fiE1 coth 2flE2l (30) 

For E 1 = E2, the right side of Eq. (30) reduces to Pink's result ta) for 
I<O'oot7olO-o2>1. A plot of this common correlation function is given in Fig. 1. 

The matrix elements on the right side of Eq, (26) may be simplified 
considerably by use of 

(B2~ S- i C 2  v ) p m  : ( ~ ) 2 ~ t , 2  v ) v , m  - -  S i 2 j  1-- i2= - 1 - v , i2 j  - i2v - m - 1 (31 ) 

whose proof is outlined in the Appendix. Noting that the left side of Eq. (31) 



636 Scott R. Chubb and David Fox 

I.O 

Z 
O 

0.5 
Z ,,= 

\ 
\ 
\ 

\ 

0 . 0  I 
0,0 0.5 1,0 

T / T  c 

Fig. 1. Graphs  (top to bottom) of ~/, I<aoo~olao2)l, laooaolCrozao3cro,)l, and Kaooao2ao4)j 
(all for E~ = E2) as functions of T. The second graph from the top also represents 

I(aooaolalo)] for E 1 = E 2. 

is an element of  B S - 1 C  in Eq. (26) and that the corresponding element 
of  ~ is ('~2a,2~)pj, one sees that Eqs. (20a) and (26) reduce to 

I (ao ioao i ,  ..' aoi2~)l = .~/det  F (32) 

Each submatrix F2a,2 fl of F has the dimensions of  ~2~,2fl, with matrix elements 

= S -  1 (33) ( F2~,2.a) p,x i2s -i2~, - p - 1,12s - i2~ - x - 1 

Pink (4} found that [ ( a o o a o ~ a o , j + l ) [  = ~ ( S - 1 ) # .  For this case, his 
method is simpler than ours, but it is not readily extended to the 
more general cases discussed here, even for spins on a straight line. The 
present method immediately yields Pink's result for the equivalent function 
[ ( a o o a o l a o , j +  1)[; in this case the matrix F is one-dimensional. (As a check 
on the method, this result can be shown to be  equal to the determinant 
of the j-dimensional F matrix appearing in K a o o a o j a o , j +  1)[ . )  

Figure 1 contains graphs of ] ( a o o a o l a 0 2 ) ]  , ] ( a o o a o l a o 2 a 0 3 0 " 0 4 ) l  , 

K a o o a o 2 a 0 4 ) l ,  and J{, all for E1 = E2. As noted earlier, when E1 = E2, 
the first function equals I ( a o o a o l a 1 0 ) l .  
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APPENDIX.  DERIVATION OF EQ. (31) 

From Eqs. (21c), (14b), and (14c) and the definition of [B2,(v)]z, 

(Bz~)t,q --- (27ti)-1 ~[B2~(V)]lvq-1 dv 
,) 

it follows that 

Similarly, if 

[B:~(v)]~-- #~(v)v (i='-~='-t~ 

then 

(C2p)v,m = (2~i)-1 f[C2p(2)],.2v-1 d2 

(A1) 

(A2) 

(A3) 

[C2a (2 ) ] , .  = q~(2- a)2 (i=s-i=p-m) = [q~(2)] - 12(i2s-i2~-") ( A 3 )  

From Eqs. (14c) and (24b) with Xl(v) = [B2~(v)]~ and Y,,(2) = [C2~(2)] m, 
it follows that 

(B2~ S -  1 C2#)l,rn 

=(2~i)  -2 ~ {(1- o~2v-1)(1- ~12-~)[(1- ~lv-1)(1- Tz2-1)]-l} I/2 
I.&vt < 1 

x [2v(1 - 2v)] - ~v (i2~- i2= - l ) l ~ ( i 2 J  - 12fl - m) d2 dv (A5) 

After making the change of variable 2' = 2-  2 we find the 2' integration has 
two contributions. The first, arising from the pole at 2 ' =  v, is equal to 
(72~,2p)t~, and exactly cancels the corresponding matrix element ofy in Eq. (26). 
The second contribution comes from the residue at the origin and is equal 
to the second term on the right of Eq. (31). 

A similar development leads to cancellation of all elliptic integral terms 
implicitly appearing on the right side of Eq. (25) for the case 2" = 2'. 
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